This graduate-level course takes a broad look at quantitative data collection and analysis techniques used across the social sciences. Each week, we explore a specific technique (or a related set of techniques) to understand how the technique is used in practice, the assumptions that underlie its use, and the types of questions for which the technique may yield insights. The class explores methods as varied as missing data imputation, network analysis, structural equation modeling, and non-parametric bootstrapping.



Graduate seminar (4-10 students)

Image credit: DALL-E



Comments are closed